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1. Introduction 

Machine vision systems have fundamental limitations with respect to resolution, field of view (FOV), and depth 

of focus (DOF). Angular resolution and FOV are conflicting specifications, limited by the size and resolution of the 

image sensor. 

The field of view of an imaging system is given by the focal length 𝑓 of the objective and the image sensor size 𝑆: 

FOV = 2 tan−1
𝑆

2𝑓
 

The DOF of an imaging system with focal length 𝑓, focus or object distance 𝑑, f-number 𝑁 and circle of 

confusion 𝑐 is given by: 

DOF ≈
2𝑑2𝑁𝑐

𝑓2
 

Extending the FOV while maintaining high resolution is crucial for a variety of applications. For example, in public 

surveillance of train stations or airports, a large scene needs to be imaged with a high resolution to do detailed 

object detection or face recognition (Figure 1). Another example is traffic sign detection in autonomous driving, 

which benefits from FOV expansion by enabling to read signs at a larger distance. 

 

Figure 1: FOV expansion and area of interest selection using a 2D fast steering mirror. 

Other applications where good resolution and a large FOV are beneficial are barcode scanning and iris 

recognition. To maintain high resolution, the barcode or the human eye need to be accurately positioned to be 

within the camera’s FOV. This limits the ease-of-use of such imaging systems or may make it necessary to use 

multiple devices to cover the necessary FOV.  

An elegant way to satisfy the extreme resolution and field-of-view requirements that these applications pose is 

to combine a 2D fast steering mirror with a liquid lens. The mirror is used to select a small area of interest within 

a large FOV, while the liquid lens allows one to quickly adapt the focus.  

Optotune’s 2D fast steering mirror MR-15-30 with its 15 mm aperture and large ±25° scan range as well as the 

tunable lens EL-16-40 with its unrivalled 16 mm clear aperture are both ideally suited for this application, allowing 

for a compact and flexible solution. The MR-15-30 has the advantage over 2D-MEMS mirrors in terms of both 

travel range and clear aperture, and over galvo mirrors in terms of compactness, requiring a single device to 
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cover two axes of rotation.The main technological benefits of the MR-15-30 are shown together with the working 

principle of our liquid lenses in Figure 2.  

 

Figure 2: Main technological benefits of Optotune’s MR-15-30 fast steering mirror and working principle of a 

focus tunable lens. 

The combination of the MR-15-30 and the EL-16-40 is implemented in the Optotune’s FOV Expansion 

Development kit (datasheet). The complete kit is shown in Figure 3. It is a plug-and-play solution for high-

resolution imaging across a wide, 100° optical angle FOV. The kit comes with software support in our Optotune 

Cockpit, with built-in widgets for both face recognition and area-of-interest selection. 

 

 

Figure 3: Hardware components included in the FOV Expansion Development kit. 

MR-E-3 

Base unit 

Wide-angle 

objective (4 mm) 
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Post mount (not 
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Mounting set 

https://www.optotune.com/s/Optotune-FOV-Expansion-Development-Kit.pdf
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2. Camera calibration 

The simplest and most widely used camera model is the that of a pinhole camera. Figure 4 shows how points in 

the target or focal plane (𝑥𝑡 , 𝑦𝑡) get mapped onto the image plane (𝑥𝑐 , 𝑦𝑐) of the camera. For simplicity, the 

image plane is thought to be in front of the pinhole, at a distance equal to the focal length.  

 

Figure 4: Pinhole camera model on the left and the associated intrinsic and extrinsic calibrations on the right. 

This simple model can be represented by the following relation written in homogenous coordinates 

[
𝑥𝑐

𝑦𝑐

1
] =  𝑲 [𝑹 𝒕] [

𝑥
𝑦
𝑧
1

] 

where 𝑲 =  [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] , 𝑹 = 𝑹−⊤ and 𝒕 ∈ ℝ3 

The extrinsic parameters, i.e. the rotation matrix 𝑹 and the translation vector t, describe the location and 

orientation of the world frame with respect to the camera frame. We can simplify the above equation by selecting 

normalized coordinates (𝑥𝑡 , 𝑦𝑡) on a target plane perpendicular to the optical axis at unit distance:  

[
𝑥𝑐

𝑦𝑐

1
] =  𝑲 [

𝑥𝑡

𝑦𝑡

1
]  

This parametrization with only two coordinates makes sense because a camera on its own cannot determine how 

far an actual object is away from the image plane. Without knowing actual object dimensions, just the angles to 

the object are known.1 

While for an ideal pinhole camera 𝑓𝑥 = 𝑓𝑦 = 𝑓, it makes sense to allow for a small difference in this parameter 

due to an imperfect sensor or lens misalignment. The factors 𝑐𝑥  and 𝑐𝑦 are usually close to half of the image 

width and height, but can differ due to lens decentering. 

For wide-angle imaging systems, this linear camera model does not provide enough fidelity. Therefore, additional 

nonlinear terms need to be added to account for lens distortion. A common model is 

𝑥𝑐,distorted = 𝑥𝑐(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) + 2𝑝1𝑥𝑐𝑦𝑐 + 𝑝2(𝑟2 + 2𝑥𝑐
2) 

 

  
 

https://www.optotune.com/s/Distance-measurement-using-an-Optotune-focus-tunable-lens.pdf
https://www.optotune.com/s/Distance-measurement-using-an-Optotune-focus-tunable-lens.pdf
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𝑦𝑐,distorted = 𝑦𝑐(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) + 𝑝1(𝑟2 + 2𝑦𝑐
2) + 2𝑝2𝑥𝑐𝑦𝑐   

with 𝑟 =  √𝑥𝑐
2 + 𝑦𝑐

2 and 𝑘1, 𝑘2, 𝑘3 describing radial distortion (pincushion and barrel distortion) and 𝑝1, 𝑝2 

describing tangential distortion. 

A standard and practical technique to fit these parameters to a set of measurements was found by Zhang2. All 

that is required is a set of pictures of a flat checkerboard taken from a variety of positions and angles. An example 

implementation can be found following this link, with an example picture shown in Figure 5. Typically, at least 10 

views of the checkerboard are required for a precise model fit. 

In the case of the FOV Expansion Development kit, Optotune Cockpit allows importing a calibration matrix and 

distortion vector as defined above for the face recognition program. The condition 𝑐𝑥 < 𝑐𝑦  has to be fulfilled due 

to the portrait format of the wide-angle camera. 

 

Figure 5: Example image of a checkerboard used to calibrate a wide-angle camera to correct for lens distortion. 

  

 

2 Zhang, Zhengyou. (2000). A Flexible New Technique for Camera Calibration. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 22. 1330 - 1334. 
10.1109/34.888718. 

https://docs.opencv.org/3.4/dc/dbb/tutorial_py_calibration.html
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3. Mirror coordinate system 

3.1. Definition of the XY coordinate system  

A coordinate system is defined to calibrate the internal optical feedback mechanism and relate it with a physical 

mirror position. This coordinate system is a Cartesian coordinate system with axes X and Y. The X-axis is 

perpendicular to the cable protruding from the mirror head and the Y-axis is parallel to this cable. The numerical 

values on the axes are unitless and defined via the maximum deflection of the mirror in optical angles, i.e. 50°. 

Along each axis, a deflection of +50° corresponds to a value of +1 and a deflection of -50° corresponds to a value 

of -1. This corresponds to the projection observed on a screen if the mirror reflects a laser beam travelling along 

the z-axis, incident on its center. For example, the analytical relationship between deflection angle θ and 

coordinate system value 𝑥 along the x-axis is: 

tan(𝜃)

tan (50°)
 = 𝑥 

Figure 6 below illustrates the relationship between the deflection on-axis and the X-coordinate using three 

examples. 

 

 

Figure 6: Example mirror deflections and the corresponding X-coordinate according to the mirror coordinate 

system definition. 

The mirror has a maximum mechanical deflection of 25° in every direction. Therefore, in the XY coordinate 

system, a unit circle with radius 1 contains all accessible values, as shown in gray in Figure 7. 

 

Figure 7: Mirror coordinate system and accessible positions. 
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The mirror can access every possible combination of X and Y values for both X and Y < 0.7 (black square in Figure 

7). If one of the XY values exceeds 0.7, the other value must decrease, so that at any time X2 + Y2  ≤ 1 (the red 

dot in the figure above is an example). The firmware of the mirror controller automatically reduces XY positions 

outside the accessible unit circle by moving them to the nearest edge of the unit circle (green dots in the figure 

above). This behavior prevents mirror and driver damage. 

When driving the mirror in open loop mode, it is possible to reach angles larger than 25°, which correspond to 

XY values bigger than 1. However, these angles are outside the guaranteed and calibrated range of the mirror 

and calibration accuracy can vary significantly. 

3.2. Transformation between different Cartesian projection coordinates 

When using the mirror in a scanning system, typically the arrangement with 0° AOI is not practical, since incident 

and reflected beam paths would overlap. Figure 8 shows the general case: the mirror with its middle point 𝑀 and 

normal vector 𝒏𝑚 rotates around the center of rotation 𝐶 and reflects an incoming beam, specified by a point 𝑃0 

and a unit vector 𝒏0. The reflected beam starts at point 𝑃1 and has the direction of the unit vector 𝒏1. Finally, 

the reflected beam hits a target plane at the point 𝑃2, where the target plane is located at a distance 𝐷 from the 

undeflected mirror center and a has the normal vector 𝒏𝑡.   

 

Figure 8: Coordinate system definition of the mirror and target plane. 

This general arrangement captures distortion effects due to  

• AOI of the incoming beam 

• Rotated target plane 

• Off-centered incoming beam 

• Distant center of rotation 
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The vector analysis to calculate the beam path is straightforward. First, inserting the equation for the incoming 

beam 𝒓 = 𝒓𝑂𝑃0
+ 𝑡 ⋅ 𝒏0 , 𝑡 ∈ ℝ  into the equation for the mirror plane (𝒓 − 𝒓𝑂𝑀) ⋅ 𝒏𝑚  = 0 yields the 

intersection point  𝑃1 

 𝒓𝑂𝑃1
= 𝒓𝑂𝑃0

+ 𝑡1 ⋅ 𝒏0 

where 𝑡1 =
(𝒓𝑂𝑀 − 𝒓𝑂𝑃0

) ⋅ 𝒏𝑚

𝒏0 ⋅ 𝒏𝑚

 and 𝒓𝑂𝑀 =  𝒓𝑂𝐶 + 𝑑 ⋅ 𝒏𝑚  

Then, the reflected beam is obtained by applying the law of reflection  

𝒏1 = 𝒏0 − 2 ⋅ (𝒏0 ⋅ 𝒏𝑚) ⋅ 𝒏𝑚 

Finally, we calculate the intersection point with the target plane 𝑃2 

𝒓𝑂𝑃2
= 𝒓𝑂𝑃1

+ 𝑡2 ⋅ 𝒏1 

where 𝑡2 =
(𝒓𝑂𝑇 − 𝒓𝑂𝑃1

) ⋅ 𝒏𝑡

𝒏1 ⋅ 𝒏𝑡

 

We can now express the vector 𝒓𝑇𝑃2 
= 𝒓𝑂𝑃2

− 𝒓𝑂𝑇 in target plane coordinates 

𝒓𝑇𝑃2𝑇 =  𝑨𝑇𝐼 𝒓𝑇𝑃2𝐼 = [
 𝑥𝑡 

𝑦𝑡

0
] 

where 𝑨𝑇𝐼 = 𝑨𝐼𝑇
−1 = 𝑨𝐼𝑇

⊤
 is the orthogonal transformation matrix between the frames of reference 𝐼 and 𝑇.  

In a simplified case, for an incoming beam hitting the mirror centered and 𝑑 assumed to be zero, we have  𝑃1 =

𝑀 = 𝐶 and one can explicitly calculate the mirror orientation from projected coordinates.  

𝒏𝑚 =
𝒏1 − 𝒏0

‖𝒏1 − 𝒏0‖
  

  where  𝒏1 =
𝒓𝑀𝑃2

‖𝒓𝑀𝑃2
‖

   and   𝒓𝑀𝑃2
= 𝒓𝑀𝑇 +  𝒓𝑇𝑃2 

  

Note that this simplification still captures the distortion introduced by the AOI of the incoming beam, which is by 

far the most important one to consider. For convenience, in the following, the origin 𝑂 is placed at the 

undeflected mirror center: 𝑂 = 𝑃1 = 𝑀 = 𝐶. 

The above equations can be used to transform between normalized mirror coordinates (𝑥, 𝑦) and target plane 

coordinates (𝑥𝑡 , 𝑦𝑡): 

(𝑥, 𝑦)  →  𝒏𝑚 → (𝑥𝑡 , 𝑦𝑡): 

1. By definition of the mirror coordinates, 𝒏0𝐼 =[
0
0
1

] and 𝒓𝑀𝑃2𝐼 = [
𝑥 𝐷 tan 50°
𝑦 𝐷 tan 50°

−𝐷

] . So 𝒏1𝐼  is obtained 

by normalizing [

𝑥 
𝑦

− 1 tan 50°⁄
] and the mirror normal by calculating 𝒏𝑚 =

𝒏1−𝒏0

‖𝒏1−𝒏0‖
. 

2. Redefine the actual incoming beam 𝒏0 and target plane (𝑨𝑇𝐼  and 𝐷).  Using the known mirror 

normal 𝒏𝑚, calculate 𝒓𝑇𝑃2𝑇 using the above equations and extract (𝑥𝑡 , 𝑦𝑡), i.e. the first two 

components of 𝒓𝑇𝑃2𝑇 . 
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(𝑥𝑡 , 𝑦𝑡)  → 𝒏𝑚 → (𝑥, 𝑦):   

1. Specify the actual incoming beam 𝒏0 and target plane (𝑨𝑇𝐼  and 𝐷). Calculate 𝒓𝑀𝑃2𝐼 = 𝑨𝑇𝐼
⊤ [

 𝑥𝑡 

𝑦𝑡

−𝐷
] 

and normalize to get 𝒏1𝐼 , then obtain the mirror normal from 𝒏𝑚 =
𝒏1−𝒏0

‖𝒏1−𝒏0‖
. 

2. By definition of the mirror coordinates, redefine 𝒏0𝐼 =[
0
0
1

] and 𝑨𝑇𝐼  = 𝟏. Using the mirror 

normal 𝒏𝑚 from the previous step, calculate 𝒏1𝐼 = 𝒏0𝐼 − 2 ⋅ ( 𝒏0𝐼 ⋅ 𝒏𝑚𝐼 ) ⋅ 𝒏𝑚𝐼 . Scale this 

vector with a constant factor to get the vector [

𝑥 
𝑦

− 1 tan 50°⁄
], from which 𝑥 and 𝑦 can be extracted.  

As an example, consider the following arrangement: 

The incoming beam in the 𝑦𝑧-plane hits the mirror centered at a 45° incidence angle. The target plane is placed 

perpendicular to the reflected beam for an undeflected mirror, i.e. when 𝑥 = 𝑦 = 0. 

𝒏0𝐼 =
1

√2
[

0
−1
1

] , 𝒓𝑂𝑃0𝐼 = [
0
1

−1
] ,   𝑨𝑇𝐼 = [

1 0 0
0 cos 45° −sin 45°
0 sin 45° cos 45°

]  ,   𝐷 = 1700 mm ,   𝑑 = 1.3 mm 

Figure 9 shows the distortions introduced in this case. The 100° optical FOV is shown for comparison. This is the 

FOV the mirror would achieve for 0° AOI. 

 

Figure 9: Simulated FOV (right) for equally sampled mirror positions across the available angular range (left) for 

a 45° AOI. The 100° FOV resulting from 0° AOI is shown for reference. 
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4. Image rotation 

When the mirror is in the undeflected position as shown in Figure 10, the camera sees a vertically flipped, i.e. 

mirrored image. This is simple to correct and sometimes there is even a separate camera setting for flipping the 

image. However, when the mirror is scanned, objects in the resulting image will still appear rotated. The angle of 

rotation depends on the normal vector 𝒏 of the mirror. The configuration below is identical to the configuration 

in the Optotune FOV Expansion Development kit, with the camera mounted vertically and the mirror mounted 

at 45°. 

 

Figure 10: Three different frames of reference - aligned with the object/target plane, the mirror housing, or the 

camera, respectively.  

Looking at how a certain vector 𝒗 gets mapped onto the camera will allow calculating this angle. For simplicity, 

consider 𝒗 aligned with the horizontal direction of the target frame 𝑇, which in turn is aligned with the mirror’s 

x-direction, i.e. 𝒗 = 𝒆𝑥
𝑇= 𝒆𝑥

𝐼. When 𝒗 is mirrored, it gets mapped to the vector 𝒓 through the householder 

transformation 

𝒓 = (𝟏 − 2𝒏𝒏⊤) 𝒗 = (𝟏 − 2𝒏𝒏⊤) 𝒆𝑥
𝐼 . 

Expressing this equation in the frame 𝐼 yields 

𝒓𝐼 = [

1 − 2𝑛𝑥
2 ∗ ∗

−2𝑛𝑥𝑛𝑦 ∗ ∗

−2𝑛𝑥𝑛𝑧 ∗ ∗

 ] [
1
0
0

] = [

1 − 2𝑛𝑥
2

−2𝑛𝑥𝑛𝑦

−2𝑛𝑥𝑛𝑧

] 

Where 𝒏 = [𝑛𝑥 𝑛𝑦 𝑛𝑧]𝐼
⊤ and all entries that do not contribute to the matrix-vector product are marked 

with *. By projecting this vector 𝒓 onto the image sensor plane (Figure 11), the rotation angle can be calculated 

as follows 
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𝜑 = tan−1
𝑟𝑦

𝑟𝑥

  

𝑟𝑥 = 𝒓𝐼 ⋅ 𝒆𝑥
𝐶

𝐼 = 𝒓𝐼 ⋅ 𝑨𝐼𝐶 𝒆𝑥
𝐶

𝐶   

𝑟𝑦 = 𝒓𝐼 ⋅ 𝒆𝑦
𝐶

𝐼 = 𝒓𝐼 ⋅ 𝑨𝐼𝐶 𝒆𝑦
𝐶

𝐶  , 

where 𝑨𝐼𝐶  is found as a rotation around x by 135°: 

𝑨𝐼𝐶 = [
1 0 0
0 cos 135° sin 135°
0 −sin 135° cos 135°

]  

 

Figure 11: Projection of 𝒓 onto the image sensor plane. After being mirrored, the horizontal vector 𝒗  appears 

rotated by 𝜑. 

With this, the rotation for the setup shown in Figure 10 - corresponding to the angle 𝜑 ∈ (−𝜋 2⁄ ,  𝜋 2⁄ ) - 

becomes 

𝜑 = − tan−1 √2 𝑛𝑥 (𝑛𝑦+𝑛𝑧)

1−2𝑛𝑥
2    

Note that in order to rotate the image back, it is necessary to rotate the camera image by the angle −𝜑. When 

using the straightened image, it is necessary to either pad the corner areas or to crop the image. The cropping 

can for example be done as shown in Figure 12 by maximizing the area. Another choice would be to maximize 

the area while keeping the aspect ratio constant. It is obvious that for large rotation angles, a significant portion 

of the image gets discarded that way. However, for computer vision algorithms such as face recognition or 

barcode scanning, rotating the image back is typically not necessary. 

 

Figure 12: Rotated image as captured by the camera (A) and the back-rotated image (B). 
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5. Face detection 

Figure 13 shows the program flow of the face detection demo program in Optotune Cockpit, available with the 

FOV Expansion Development kit. The demo algorithm detects a face in the wide-angle overview image, and 

provides a focused high-resolution image of that face using the tunable lens and the 2D mirror. The algorithm is 

based on a neural net by Linzai (link), ported to C# by Takuya Takeuchi (link). 

  

Figure 13: Flowchart of the face detection demo program in Optotune Cockpit (left) and example of a distance-

from-focus calibration (right).  

For more information on autofocus including distance measurements using Optotune’s liquid lenses, please 
check this link. To find a good compromise between accuracy and speed, the lens settling time, lower and upper 
focal power limit, and fine and coarse step size can be adjusted. 

The FOV Expansion Development kit is offered in two different versions, one with a 50 mm fixed focal length lens 

and one with a 75 mm lens. In Optotune Cockpit, two calibrations are available for the distance-from-focus 

measurement using the two different objectives. The calibration is valid only when the manual focus on the 

objectives is set to infinity. A custom calibration can be done by measuring the focal power 𝐹𝑃 needed to focus 

to different working distances 𝑊𝐷 and fitting the parameters 𝑎, 𝑏, 𝑐 to the data using the simple model: 

WD =
𝑎

𝐹𝑃 + 𝑏
+ 𝑐 

 

The complete list of parameters can be imported into Optotune Cockpit as a json-formatted text file. After closing 

Optotune Cockpit, the software will store an updated .json file to the user’s Appdata folder (path=%appdata%). 

This file is automatically loaded at the next startup. 

  

https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
https://github.com/takuya-takeuchi/UltraFaceDotNet
http://www.optotune.com/s/Distance-measurement-using-an-Optotune-focus-tunable-lens.pdf
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6. Image stitching 

In addition to face recognition and area-of-interest selection, the FOV Expansion Development kit can be used to 

stitch multiple images into a single high-resolution, wide-angle image. An example is shown in Figure 14; another 

one can be found on our website.  

 

Figure 14: Example of stitched image with gigapixel resolution.  

6.1. Choice of mirror coordinates 

Due to the projection distortion described in Section 3.2, a uniform spacing of mirror coordinates will not result 

in a uniform spacing of points in the scene. Instead, one needs to calculate the mirror coordinates that lead to a 

uniform spacing in the target plane. The sampling density should be chosen to yield a certain overlap between 

neighboring images, typically 20%-40%. A larger overlap increases the number of pictures to be captured and the 

computational effort to stitch the image. A smaller overlap makes the feature matching process more difficult.  

An example set of mirror coordinates needed to create a uniformly sampled image plane is shown in Figure 15. 

As a landscape picture often is preferred, the setup can be rotated to get a wider horizontal- rather than vertical 

range.  

  

Figure 15: A specific set of non-equally spaced mirror positions (left) results in equally spaced target plane 

coordinates (right, marked orange). 

https://www.optotune.com/gigapixel-imaging
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6.2. Example Python script for image acquisition 

Optotune provides a sample Python script to acquire images using the FOV Expansion Development kit, using the 

outlined coordinate transformations. The output of the script is 

• A set of images uniformly acquired across FOV, numbered row by row 

• A set of coordinates for each image (image position and image rotation) to be imported in the next step 
to facilitate the stitching process. 

 

6.3. Stitching process 

The stitching process is based on the free, yet powerful Hugin software. 

 

1) Import all images. Save current Hugin project as project.pto. 
 

2) (Optional) Get an initial picture distribution and image rotation according to mirror positions. This 
step allows to limit picture comparisons to neighboring images. From the command line use the 
command “pto_var --set-from-file filename --output=output.pto project.pto” with the file 
(filename=”Hugin.csv”) created with the python script taking the pictures. This should place all 
pictures in proximity to the final position after stitching. If the process results in a good result you 
can jump to point 7). 

 

3) Create control points (CP): For the feature matching, create a new CP detector (cpfind.exe with 
argument “—linearmatch -o %o %s”) which will detect matches between adjacent images (in the 
order of the import). This method will require an additional step to align the rows in the panorama, 
but the complexity of the CP detector will drastically decrease. The alternative CP detector multirow 
has higher computational complexity. 

 

4) Create control points (connecting rows): Connect different rows by adding CP manually. It is advised 
to create CP for the pictures in the edges. There is no need to create CP along all the row as the 
prealigned method will do this work. Another method is to manually move rows in the preview 
window to align them correctly and run the CP detector with prealigned method 7). 

 

5) Anchor the center image: Select the image and use the context menu to define the reference image. 
 

6) Optimization step: this process will optimize the position of the pictures to minimize the mismatch 
in the control points. There is no need to optimize translation in the geometric parameters as long 
as the setup is stationary. Do not forget to previously anchor a picture close to the center. 

 

7) Autodetect control points of prealigned images (considering only overlapping images): Create a new 
CP detector with argument “--prealigned -o %o %s”. This process will create CP between 
overlapping pictures which do not have CP in common. This step is to align images within rows, or 
also globally, if step 2) was successful. 
 

https://archive.optotune.com/FOV_Expansion_Kit_Picture_Aquisition_Demo.zip
https://hugin.sourceforge.io/
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8) (Optional) Create horizontal/vertical lines: This helps to avoid distortion in the stitched image. Add 
lines, e.g. edges of buildings, in different parts of the image for a better result, adding a lot of lines 
in same area of the FOV is not useful.  

 

9) Verification + erasing bad CP: The bad CP can easily be identified in the CP table; usually they are 
the ones with large distances (sort accordingly). Verify those and delete the ones that are not 
correct (due to repetitive patterns in the pictures such as on building, a lot of bad CPs can appear). 
Be sure to redo the optimization step from time to time as you delete false control points. 

 

10) Photometric optimization: Select multiple photometric parameters to optimize notably the 
vignetting3 parameters. Do not forget to set as anchor for exposure a picture that is not over/under 
exposed. (Right click on Photos panel). 

 

11) Stitching process: In Stitcher tab, calculate the FOV and optimal size before stitching. If you don’t 
want to see the edges of the panorama and instead a rectangle, use the crop button. It is strongly 
advised to use Multiblend a significantly faster drop-in alternative to Enblend for the blending 
process (https://horman.net/multiblend/). “Due to Enblend's O(n2) complexity, compared to 
Multiblend's O(n) linear time complexity, this speed advantage increases to 300x for a gigapixel 
mosaic”. The use of “--wideblend” argument is advised. 

 

 

 

 

3 Vignetting could be improved by having an entrance pupil of the objective tailored to the size of the mirror. Optotune may consider developing a custom lens 
for FOV expansion in the future. 

1 

6 

3, 7 

https://horman.net/multiblend/
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